m at h . SP ] 1 8 A pr 2 01 4 Tunneling between corners for Robin Laplacians
نویسنده
چکیده
We study the Robin Laplacian in a domain with two corners of the same opening, and we calculate the asymptotics of the two lowest eigenvalues as the distance between the corners increases to infinity.
منابع مشابه
Tunneling between corners for Robin Laplacians
We study the Robin Laplacian in a domain with two corners of the same opening, and we calculate the asymptotics of the two lowest eigenvalues as the distance between the corners increases to infinity.
متن کاملRTES-09 Reliability.indd
[B ur ns 98 ] A la n B u rn s, B ri an D o b b in g, G eo rg e R o m an sk i Th e R av en sc ar T as ki n g Pr o fi le fo r H ig h In te gr it y Re al -T im e Pr o gr am s R el ia b le S o ft w ar e Te ch n o lo gi es , A d aEu ro p e ’9 8, U p p sa la , S w ed en , J u n e (1 99 8) [F ill ia tr e2 01 3] J.C . F ill ia tr e D ed u ct iv e Pr o gr am V er ic at io n w it h W h y3 – A T u to ri a...
متن کاملar X iv : m at h / 01 04 17 8 v 1 [ m at h . N T ] 1 8 A pr 2 00 1 Arithmetic theory of q - difference equations
Part II. p-adic methods §3. Considerations on the differential case §4. Introduction to p-adic q-difference modules 4.1. p-adic estimates of q-binomials 4.2. The Gauss norm and the invariant χv(M) 4.3. q-analogue of the Dwork-Frobenius theorem §5. p-adic criteria for unipotent reduction 5.1. q-difference modules having unipotent reduction modulo ̟v 5.2. q-difference modules having unipotent redu...
متن کاملRoom Temperature Hydrogen Sensor Based on Single-Electron Tunneling Between Palladium Nanoparticles
In this paper, we present the results of single-electron tunneling in two-dimensional (2D) hexagonal closed packed arrays of palladium nanoparticles. After inspecting the emergence of Coulomb blockade phenomena, we demonstrate the possibilities of using these arrays as a single-electron tunneling based hydrogen sensor. We assumed arrays of palladium nanoparticles with diameters of 3.5 and 6...
متن کاملar X iv : 1 41 2 . 60 75 v 1 [ cs . D M ] 2 2 O ct 2 01 4 A Generalized Cheeger Inequality ∗
where capG(S, S̄) is the total weight of the edges crossing from S to S̄ = V − S. We show that the minimum generalized eigenvalue λ(LG, LH) of the pair of Laplacians LG and LH satisfies λ(LG, LH) ≥ φ(G,H)φ(G)/8, where φ(G) is the usual conductance of G. A generalized cut that meets this bound can be obtained from the generalized eigenvector corresponding to λ(LG, LH). The inequality complements a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014